Contents

Introduction .. II

History of Powder Metallurgy .. 3

Earliest Developments ... 3

Powder Metallurgy of Platinum 3

Further Developments .. 5

Commercial Developments .. 5

Post-War Developments ... 6

Recent Developments .. 6

Powder Metallurgy Literature 7

Powder Metallurgy Trade Associations 7

Powder Metallurgy Methods and Design 9

General PM Design Considerations 9

Powder Processing Techniques 9

Comparison of Powder Processing Methods 12

Conventional Die Compaction 12

Bearings .. 13

Metal Injection Molding ... 14

Powder Forming .. 14

Advances in Powder Metallurgy Applications 16

Net Shape Capability .. 16

Cost-Effective, High-Performance Parts 19

Metal-Matrix Composites .. 21

Advanced Automotive Use .. 21

Process Modeling and Design 23

Metal Powder Compaction .. 23

Consolutive Behavior .. 23

Materials Data Requirements 25

Die Compaction Process Simulation Model 25

Powder Injection Molding .. 26

Hot Isostatic Pressing ... 26

Metal Powder Production and Characterization

Introduction .. 31

Powder Production Methods .. 33

Atomization .. 35

General Characteristics of Atomized Metal Powders 36

Water Atomization .. 37

Particle Size Distribution .. 41

Powder Characteristics ... 42

OIl Atomization .. 43

Gas Atomization .. 43

Process Variables .. 44

Models of Gas Atomization .. 45

Gas-Atomized Powders .. 46

Other Gas Atomization Methods 47

Centrifugal Atomization Methods 48

Rotating Electrode Process ... 49

Models of Centrifugal Atomization 50

Other Methods ... 50

Millling of Brittle and Ductile Materials 53

Principles of Milling—Phenomenological Description 53

Milling Parameters and Powder Characteristics 56

Chemical & Electrochemical Methods of Powder Production 67

Oxide Reduction ... 67

Precipitation from Solution .. 67

Thermal Decomposition ... 69

Other Chemical Methods ... 69

Electrodeposition ... 70

Ultrasonic and Nanophase Powders 72

Fine Metal Powders .. 72

Atomization Methods .. 73

Applications .. 76

Metallic Nanopowders .. 77

Production Methods .. 77

Applications .. 79

Mechanical Alloying .. 80

The Process of Mechanical Alloying 80

Mechanism of Alloying .. 83

Consolidation .. 83

Oxide Dispersion Strengthened Alloy 85

Applications .. 85

Displacement Reactions ... 88

Powder Contamination ... 89

Modelling ... 90

Spray Drying and Granulation 91

Splat Granulation ... 91

Spray Drying .. 92

Applications .. 95

Rotating Electrode Process .. 97

Equipment .. 98

Particle Size Distribution ... 98

Aerospace Applications .. 99

Other Powder Applications 100

Recent Process Development 100

Briquetting and Preforming of Metal Powders and Binders 102

Blending and Premixing .. 102

Effect of Powder Characteristics 104

Equipment for Blending and Premixing 105

Effect of Blending Techniques on Properties of Metal Powders 105

Mixing of Metal Powders ... 106

Dry Milling of Metal Powders 106

Blender Treatment of Metal Powder Mixes 107

Production of Metal Powders 107

Production of Iron Powders 109

The Hogasaki Process ... 110

The Pyrolysis Process ... 111

Carbon-iron Powders .. 112

Electrolytic Iron Powders .. 114

Flash-arc-cast Reduction .. 115

Water Atomization .. 117

The GNP Iron Powder Process 117

The Doner Process .. 119
Kobe/Kobeclo Process 120
Kawasaki Process 121
Production of Steel Powders 123
Steel Powders ... 124
Diffusion-Alloyed Powders 126
Other Alloying Methods 128
Stainless Steel and High-Alloy Powders 128
Stainless Steel Powders 129
Tool Steel Alumination 130
Superalloy Powders 131
Production of Copper Powders 132
Production of Copper Powder by the Reduction of Copper Oxide ... 132
Production of Copper Powder by Electrolysis 135
Production of Copper Powder by Atomization 139
Production of Copper Powder by Hydrometallurgical Processing .. 140
Production of Copper Alloy Powders 143
Brasses .. 144
Nickel Silvers .. 145
Production of Tin Powders 146
Milling .. 146
Atomization ... 146
Properties of Tin Powder 146
Production of Aluminum and Aluminum-Alloy Powder ... 148
Historical Background 148
Gas Atomization ... 148
Particle Size Distribution 153
Particle Morphology 154
Surface Oxide Content 155
Chemical and Physical Properties 156
Explosion Potential 157
Applications ... 158
Production of Titanium Powder 160
Chemical Reduction 160
Hydride/Dehydride Process 162
Gas Atomization ... 163
Plasma-Roasting Eutectoid Process 164
Mechanical Alloying 164
Production of Nickel Based Powders 165
Carbonyl Vapor Metallurgy 167
Metal Carbonyls ... 167
Metal Carbonyl Formation and Decomposition 168
Nickel Tetraacetyl 168
Commercial Processes 169
Properties and Applications 171
Production of Nickel Powder by Hydrometallurgical Processing .. 171
Atomization ... 174
Mechanical Alloying 176
Production of Cobalt-Based Powders 179
Hydrometallurgical Processing 179
Thermal Decomposition of Cobalt Oxide 180
Atomization ... 181
Production of Precious Metal Powders: Silver, Gold, Palladium, and Platinum 182
Production of Silver Powders 182
Production of Gold Powders 184
Palladium Powders 185
Platinum Powders 186
Production of Refractory Metal Powders 188
Production of Titanium and Tantalum Carbide Powders 188
Tantalum Metal Powder 189
Tungsten Carbide Powder 193
Other Refractory Metals 197
Production of Molybdenum Powder 197
Tantalum and Niobium Powders 197
Production of Beryllium Powders 205
Physical Properties and Applications 206
Sampling and Classification of Powders 206
Sampling of Powders 206
Sampling Stored Material 207
Sampling Flowing Streaming Powders 207
Evaluation of Sampling 210
Sampling of Sample Required 210
Powder Characterization and Testing 214
Powder Classification 214
Basic Variables .. 214
Systems for Foreign Classification 212
Sieving Methods .. 213
Sieve Types .. 213
Process Variables 215
Methods of Sieving 216
Appendix: Dispersion of Powders in Liquids 218
Wetting Powder Clumps into the Liquid 218
Breaking-Up Wetted Clumps 219
Preventing Floculation of the Dispersed Particles 220
Selecting a Dispersing Agent 220
Bulk and Surface Characterization of Powders 222
Micronanalysis Methods 222
Surface Analysis .. 225
Bulk Analysis .. 225
Particle Size and Size Distribution 234
Sample Preparation 235
Particle Size Measurement 236
Physical Properties and Applications 239
Sieve Analysis .. 239
Fish Subsieve Sizer 242
Sedimentation Methods 244
Micrometronograph 244
Light Scattering Turbidimeter 245
Roller Air Analyzers 245
Other Sedimentation Methods 245
Electrochemical Zone Sensing Methods 247
Electrozone Analysis 247
Optical Sensing Zone 248
Light Scattering .. 250
General Theory .. 250
Instruments .. 250
Algorithm Calculations 252
New Applications .. 253
Time Domain Spectroscopy 256
Particle Image Analysis 259
Image Analysis of Powder Size 259
Size Measurement 259
Sampling Techniques 259
Optical Microscopy 260
Transmission Electron Microscopy 261
Scanning Electron Microscopy 261
Measurement Techniques 264
Particle Shape Characteristics 263
Particle Shape Factors 266
Electron Densiometry 266
Conventional Shape Factors 267
Stereological Characterization 268
Morphometry Analysis 272
Surface Area, Density, and Porosity of Powders 274
Gas Adsorption .. 274
Theory of BET Method 274
BET Apparatus .. 275
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material and Equipment</td>
<td>355</td>
</tr>
<tr>
<td>Process Description</td>
<td>359</td>
</tr>
<tr>
<td>Advantages and Limitations</td>
<td>360</td>
</tr>
<tr>
<td>Powders and Applications</td>
<td>361</td>
</tr>
<tr>
<td>Binder-Assisted Extrusion</td>
<td>365</td>
</tr>
<tr>
<td>Feedstock</td>
<td>365</td>
</tr>
<tr>
<td>Extrusion</td>
<td>368</td>
</tr>
<tr>
<td>Post-processing Considerations</td>
<td>372</td>
</tr>
<tr>
<td>Examples of Binder-Assisted Extrusion</td>
<td>373</td>
</tr>
<tr>
<td>Conclusions</td>
<td>374</td>
</tr>
<tr>
<td>Warning</td>
<td>376</td>
</tr>
<tr>
<td>Effects on Green and Sintered Properties</td>
<td>377</td>
</tr>
<tr>
<td>Magnetic Applications</td>
<td>378</td>
</tr>
<tr>
<td>Ceramic Powders and Delivery Systems</td>
<td>378</td>
</tr>
<tr>
<td>Tooling Design for Warm Compaction</td>
<td>379</td>
</tr>
<tr>
<td>Part Processing Considerations</td>
<td>379</td>
</tr>
<tr>
<td>Potential Applications of Warm Compaction</td>
<td>379</td>
</tr>
<tr>
<td>Cold Isostatic Pressing</td>
<td>382</td>
</tr>
<tr>
<td>Process Characterization</td>
<td>382</td>
</tr>
<tr>
<td>Process Equipment</td>
<td>383</td>
</tr>
<tr>
<td>Wet-Bag Isostatic Pressing</td>
<td>385</td>
</tr>
<tr>
<td>Part Size and Shape</td>
<td>385</td>
</tr>
<tr>
<td>Powder Properties</td>
<td>386</td>
</tr>
<tr>
<td>Process Parameters</td>
<td>387</td>
</tr>
<tr>
<td>Applications</td>
<td>387</td>
</tr>
<tr>
<td>Roll Compacting of Metal Powders</td>
<td>389</td>
</tr>
<tr>
<td>Production Procedures</td>
<td>389</td>
</tr>
<tr>
<td>Commercial Production</td>
<td>399</td>
</tr>
<tr>
<td>Specialty Applications</td>
<td>392</td>
</tr>
<tr>
<td>Compaction Analysis</td>
<td>392</td>
</tr>
<tr>
<td>Recent Developments</td>
<td>394</td>
</tr>
<tr>
<td>Shaping and Pressing Technologies</td>
<td>396</td>
</tr>
<tr>
<td>Spray Forming</td>
<td>396</td>
</tr>
<tr>
<td>Metallurgical Characteristics</td>
<td>397</td>
</tr>
<tr>
<td>Spray Forming Applications</td>
<td>397</td>
</tr>
<tr>
<td>Modeling and Microstructure</td>
<td>398</td>
</tr>
<tr>
<td>Deposit Cooling and Solidification</td>
<td>400</td>
</tr>
<tr>
<td>Consolidation at the Surface of the Deposit</td>
<td>401</td>
</tr>
<tr>
<td>Modeling: Current Status and Future Needs</td>
<td>405</td>
</tr>
<tr>
<td>Thermal Spray Forming of Materials</td>
<td>408</td>
</tr>
<tr>
<td>Thermal Spray Processing—Introduction</td>
<td>408</td>
</tr>
<tr>
<td>Thermal Spray Processes and Techniques</td>
<td>409</td>
</tr>
<tr>
<td>Materials for Thermal Spray</td>
<td>411</td>
</tr>
<tr>
<td>Thermal Spray Forming of Tooling</td>
<td>415</td>
</tr>
<tr>
<td>Conclusions</td>
<td>418</td>
</tr>
<tr>
<td>Slip Casting of Metal Powders</td>
<td>420</td>
</tr>
<tr>
<td>Collodial Stability</td>
<td>420</td>
</tr>
<tr>
<td>Process Considerations</td>
<td>420</td>
</tr>
<tr>
<td>Slip Casting of Metal Powders</td>
<td>423</td>
</tr>
<tr>
<td>Mechanics of Filtration</td>
<td>424</td>
</tr>
<tr>
<td>Powder Metallurgy Methods for Rapid Prototyping</td>
<td>426</td>
</tr>
<tr>
<td>Rapid Prototyping Methods</td>
<td>426</td>
</tr>
<tr>
<td>Powder Metallurgy Prototypes</td>
<td>426</td>
</tr>
<tr>
<td>Soft Tooling</td>
<td>429</td>
</tr>
<tr>
<td>Low-Pressure Molding</td>
<td>430</td>
</tr>
<tr>
<td>Methods</td>
<td>431</td>
</tr>
<tr>
<td>Advantages</td>
<td>432</td>
</tr>
<tr>
<td>Applications</td>
<td>432</td>
</tr>
<tr>
<td>Selective Laser Sintering</td>
<td>432</td>
</tr>
<tr>
<td>Laser-Based Direct Sintering</td>
<td>433</td>
</tr>
<tr>
<td>Consolidation Principles and Process Modeling</td>
<td>437</td>
</tr>
<tr>
<td>Activated Sintering</td>
<td>445</td>
</tr>
<tr>
<td>Process Modeling</td>
<td>448</td>
</tr>
</tbody>
</table>
Nitriding, 650
Sinter Hardening, 651
Steam Treating, 652
Guidelines for Heat Treating P/M Parts, 654
Mechanical Properties, 654
Welding and Joining Processes, 656
Joining Methods, 658
PM Welds, 659
Brazing Techniques, 660
Diffusion/Sinter Bonding, 660
PM Materials for Joining, 660
Techniques Improve Dimensional Tolerance, 663
Powder, 663
Compacting, 663
Hand Compacting, 667
Sintering, 668
Re-Pressing (Sizing), 668
Machining, 669
Inspection Measurement, 669
Machinability of PM Steels, 671
The Machining Process, 671
Machinability Measurement, 672
Machinability Improvement, 673
Sulfides, 674
Metallography, 676
Sulfides, 676
Tool Materials, 678
Microstructure Modification, 679
Machining of Powdered Metal, 681
General Guidelines, 681
Machining Guidelines, 682
Reinforcement of Powder Metal Parts, 682
Impregnation Technologies, 688
Performance, 690
Quality Control and Evaluation, 690
Planning and Quality Control of Powder Metallurgy Parts Production, 693
Statistical Process Control Concepts, 693
P/M Process Planning, 696
Quality Control and Inspection, 698
Process Control, 699
Inspection Considerations, 700
Defect Detection, 700
Shewhart Control Charts for Defect Data, 701
Tolerance Control, 703
Quality Control and Inspection of Secondary Operations, 705
Secondary Operations, 705
Process Control Methods, 706
Continuous Improvement and Examples, 708
Summary, 709
Testing and Evaluations of Powder Metallurgy Parts, 710
Dimensional Evaluation, 710
Measurement of Density, 712
Apparent Hardness and Microhardness, 713
Mechanical Testing/Tensile Testing, 714
Crack Detection, 714
Metallography of Powder Metallurgy Materials, 715
Sample Preparation, 719
Automatic Grinding and Polishing, 722
Manual Grinding and Polishing, 722
Metal Powder Particles, 723
Microstructure, 724
Scanning Electron Microscopy, 724
Microanalysis, 725
Microstructures of PM Materials, 726
Representative Micrographs, 728

Material Systems, Properties, and Applications, 449

Iron-Base Powder Metallurgy Materials, 571
Iron Powder Metallurgy Materials, 571
Alloying Methods, 572
Iron Base Powder Materials, 573
Mechanical Properties of Iron-Base P/M Materials, 576
Applications of P/M Structural Parts, 576
Copper-Base Powder Metallurgy, 579
Basic Requirements, 579
Conventionally (Partially) Sintered Steels, 579
Fully Sintered Steels, 673
Powder Metallurgy Stainless Steels, 674
Applications, 674
Specifications and Properties, 678
Processing, 681
Particle Metallurgy Tool Steels, 686
Particle Metallurgy Process and Product Forms, 686
Characteristics of Particle Metallurgy Microstructures, 686
Grindability and Toughness Improvements, 687
Additional Processing Benefits, 688
Particle Metallurgy Tool Steel Development, 688
Industrial Application of Particle Metallurgy Tool Steels, 689
Particle Metallurgy High-Speed Steels, 689
Cold-Work Particle Metallurgy Tool Steels, 792
Wear/Corrosion-Resistant Particle Metallurgy Tool Steels, 796
High-Performance Particle Metallurgy Tool Steels, 799
Composite Bars, HIP Cladding, and Near-Net Shapes, 800
Powder Forged Steel, 803
Material Considerations, 803
Process Considerations, 805
Mechanical Properties, 813
Quality Assurance for P/M Parts, 813
Applications of Powder Forged Parts, 819
High-Temperature Sintering of Ferrous Powder Metallurgy Components, 828
Sintering Stages and Effects, 828
Improved Mechanical Properties, 829
Improved Physical Properties, 830
Development of a Logic Phase, 831
Sintering of Active Elements, 832
Process Control Requirements, 832
Nonferrous and Nonmetallic P/M Materials, 834
Conventional Aluminum Powder Metallurgy Alloys, 834
Powder Production, 835
Press and Sintered Aluminum Alloys, 835
Aluminum P/M Part Processing, 835
Properties of Sintered Parts, 837
Powder Degassing and Consolidation, 837
Advanced Aluminum Powder Metallurgy Alloys and Composites, 840
Conventional Consolidation, 841
Emerging Technologies, 842
Mechanical Properties, 844
High-Temperature Performance, 847
Deformation Processing, 850
Technological Challenges, 851
Applications of Aluminum, 853
Copper Powder Metallurgy Alloys and Composites, 859
Copper Powders, 859
Copper and Infiltrant P/M, 864
Powder Pressing, 861
Sintering, 861
Pure Copper, 864
Bronze, 864
Brass and Nickel Silver, 866
Copper-Nickel, 866