X-Ray Diffraction Residual Stress Measurement in Failure Analytical Techniques
Residual Stress in Failures and XRD Analysis (196)
X-Ray Diffraction Theory and Residual Stress Measurement (196)
Analysis of XRD Data (196)
Instrument Calibration and Validation of Stress Measurements (197)
Sample Selection (197)
Measurement Location Selection and Location Access (198)
Selecting Measurement Directions and Depths (199)
Specimen Preparation (200)
Residual Stress Effects on Components under Quasi-Static Loading (200)
Stress-Corrosion Cracking and Corrosion Fatigue (200)
The Importance of Residual Stress in Fatigue (201)
The Effect of Manufacturing Processes on Residual Stress (201)
The Characterization of Stress Gradients Using XRD (201)
Effects of Heat Treatment on Residual Stress (202)
X-Ray Diffraction Stress Measurements in Multiphase Materials and Composites (202)
X-Ray Diffraction Stress Measurements in Locations of Stress Concentration (202)
Metallurgical Techniques in Failure Analysis (202)
Examination of Fracture (202)
Metallographic Specimen Preparation (202)
Examination of Microstructures (202)
Field Metallography (203)
Scanning Electron Microscopy (203)
Development of SEM Technology (203)
Operation (203)
Specimen Preparation (203)
Application of SEM in Fractography (203)
Chemical Characterization of Surfaces (203)
Overview of Surface Analysis (203)
Auger Electron Spectroscopy (203)
X-Ray Photoelectron Spectroscopy (203)
Time-of-Flight Secondary Ion Mass Spectrometry (203)
Example Stainless Steel Analysis (203)
Quantitative Fractography (204)
Proficiency-Based Quantitative Fractography (204)
SEM Quantitative Fractography (204)
Three-Dimensional Fracture Surface Reconstruction (205)
Fracture Appearance and Mechanisms of Deformation and Fracture (587)
Chairperson: William Berkov
General Background on Fractography (589)
Fracture Surface Information (589)
Debrito and Brittle Behavior (589)
Macroscopic Debrito and Brittle Fracture Surfaces (589)
Structure and Behavior (589)
Deformation and Fracture (589)
Brittle Transgranular Fracture (Cleavage) (590)
Intergranular Fracture (590)
Fatigue Fracture (590)
Appendix: Modeling with Fracture Mechanics (591)
Mechanisms and Inferences of Debrito and Brittle Fracture in Metals (593)
Background (593)
Single-Crystal Cleavage Models (593)
Slip, Twinning, and Cleavage in Polycrystals (595)
Debrito Fracture and Microvoid Coalescence (596)
Factors Affecting Ductility (598)
Geometric Limits of Ductility (598)
Materials Factors Affecting Ductility (598)
Fracture Appearance (599)
Cylindrical Specimens in Tension (599)
Prismatic Specimens in Tension (600)
Concurrent Failure (600)
Bending (601)
Torsion Loading (601)
Fracture at or near Stress Raising (602)
Microroscale Appearance (603)
Microroscale Details of Initiation and Propagation (604)
Fracture from Manufacturing Imperfections (605)
Case History and Failures (605)
void Nuclear Models (605)
void Cleavage Microroscale Models (606)
Fatigue Fracture Appearance (607)
Fracture Processes (607)
Macroscopic Appearance of Fatigue Fracture (607)
Microscopic Appearance of Fatigue Fracture in Metals (608)
Fatigue of Polymers and Composites (609)
Intergranular Fracture (610)
Mechanisms of IG Fracture (610)
Intergranular Brittle Cracking (610)
Dingled IG Fracture (611)
Intergranular Fatigue (611)
Causes of IG Fracture (611)
Intergranular SCC and Hydrogen Embrittlement (612)
Fracture of Polymers (613)
Deformation and Fracture (613)
Crack Propagation (614)
Fractography (614)
Fracture Markings (614)
Fracture Modes and Appearances in Ceramics (615)
Techniques of fractography (615)
Fracture Fractography (615)
Fracture Models (615)
Fracture Origins (615)
Overload Failures (616)
Fracture Modes and Mechanisms (616)
Dislocation Overload Failures (617)
Brittle Overload Failures (617)
Mixed-Mode Cracking (617)
Material Factors (617)
Temperature Effects (618)
Effect of Mechanical Loading (618)
Severe Damage or Alteration (618)
Embrittlement (618)
Environmental Conditions (618)
Laboratory Fracture Examination (618)
Fatigue Failures (619)
Fatigue Properties and Design Life (620)
Infrate-Life Criterion (S-N Curves) (620)
Fatigue-Life Criterion (e-N Curves) (620)
Ductile Fatigue (621)
Characteristics of Fatigue Fracture (621)
Crack Initiation (621)
Fatigue Crack Propagation (621)
Fatigue Crack Propagation (Stage III) (622)
Effect of Loading and Stress Distribution (622)
Load Conditions (622)
Stress Corrosion (623)
Effect of Load Frequency and Temperature (623)
Effect of Material Condition 718
Strengthening and Heat Treatments 718
Subsurface Discontinuities 719
Manufacturing Practices on Fatigue Strength 720
Corrosion Fatigue 721
Corrosion Environment 721
Testing 721
Contact Fatigue 722
Macrophotography 723
Microfractography 724
Subslip Fatigue 725
Thermal Fatigue 726
Identified 726
Creep and Stress Rupture Failures 726
Creep, Creep Behavior 728
Stress Rupture 731
Stress-Rupture Fracture 733
Metallurgical Instabilities 734
Thermal Fatigue and Creep Fatigue 736
Thermomechanical Fatigue: Mechanisms and Practical Life
Analysis 738
Basic Descriptions of TMF 739
TMF Mechanisms 739
Experimental Techniques 741
Case Study: Prediction of Residual Life in a Turbine Casing 741

corrosion-related failures 747
Chairperson: Ron Parrington
Analysis and Prevention of Corrosion-Related Failures 749
Electrochemical Nature of Corrosion 749
Analysis of Corrosion-Related Failures 751
Examples of Corrosion Failure Analysis 753
Prevention of Corrosion-Related Failures of Metals 755
Forms of Corrosion 761
Galvanic Corrosion 761
Factors Affecting Galvanic Corrosion 762
Combining Circumstances That Promote Galvanic Corrosion 764
Evaluation of Galvanic Corrosion 764
Examples of Factors Contributing to Galvanic Corrosion 766
Performance of Alloy Groupings 766
Uniform Corrosion 767
Surface Conditions 768
Classification of Uniform Corrosion 768
Material Selection 769
Effect of Corrosion Products 769
Effect of Temperature 769
Evaluation Factors 770
Design Considerations 771
Pitting and Crevice Corrosion 771
Crevice Corrosion 775
Reducing Factors Due to Pitting and Crevice Corrosion 777
Intergranular Corrosion 777
Development of Intergranular Corrosion 777
Alloy Susceptibility 778
Evaluation of Intergranular Corrosion 779
Intergranular Corrosion of Stainless Steels 779
Intergranular Corrosion of Nickel Alloys 783
Intergranular Corrosion of Aluminosilicate Alloys 784
Intergranular Corrosion of Copper Alloys 784
Intergranular Corrosion of Zinc 785
Selective Leaching 785
Declouding Mechanisms 785
Deposition Mechanisms 786
Dechloridification 786
Destanillation and Desiliconization 788
Velocity-Affected Corrosion 788
Low-Velocity Effects 788
High-Velocity Effects 791
Effect of Environment on the Performance of Plastics 796
Plastics in Water, Seawater and Marine Atmospheres 796
Environmental Stress Corrosion 797
Polymer Degradation by Chemical Reaction 797
Surface Embrittlement 798
Temperature Effects 798
Conclusions 799
Corrosion Failures of Industrial Refractories and Technical Ceramics 800
Basic Principles 801
Corrosion of Specific Classes of Refractories and Technical Ceramics 803
Strategies for Analysis and Prevention of Failures 805
Hydrogen Damage and Embrittlement 809
Overview of Hydrogen Damage Processes 809
Hydrogen Embrittlement 810
Hydrogen Environmental Embrittlement 811
Fracture Characteristics 813
Hydrogen Reaction Embrittlement 814
Susceptibility to Various Hydrogen 815
Stainless Steels 816
Nickel-Based Alloys 816
Aluminum and Aluminum Alloys 817
Copper and Copper Alloys 817
Titanium and Titanium Alloys 818
Transition and Refractory Metals 818
Analysis of Hydrogen Embrittlement in Commodity-Grade Steels 818
Preservice and Early-Service Failures 818
Factors Affecting Delayed Hydrogen Stress Cracking 819
Diagnosing Hydrogen Embrittlement 820
Stress-Corrosion Cracking 823
General Characteristics of SCC 823
Crack Initiation and Propagation 824
Mechanisms of SCC 826
Manufacturing Sources of Stress 826
Sources of Stresses in Service 830
Metal Susceptibility 831
Environmental Effects 832
Analysis of SCC Failures 834
Carbon and Low-Alloy Steels 838
Maraging Steels 843
Austenitic Stainless Steels 843
Ferritic and Duplex Stainless Steels 846
Martensitic and Precipitation-Hardening Stainless Steels 847
Nickel-Based Alloys 848
Aluminum Alloys 850
Copper and Copper Alloys 853
Titanium and Titanium Alloys 857
Liquid Metal and Solid Metal Induced Embrittlement 861
Characteristics of SMF and LMIE 861
Occurrence of SMF and LMIE 862
Failure Analysis of SMF and LMIE 862
LMIE and SMIE Service Failures 863
High-Temperature Corrosion-Related Failures 868
High-Temperature Corrosion Mechanisms 868
Protective Coatings 876
<table>
<thead>
<tr>
<th>Biological Corrosion Failures</th>
<th>881</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microbial Involvement in Corrosion</td>
<td>881</td>
</tr>
<tr>
<td>Degradation of Protective Systems</td>
<td>884</td>
</tr>
<tr>
<td>Failures Fatigue</td>
<td>885</td>
</tr>
<tr>
<td>Monitoring Industrial Systems</td>
<td>891</td>
</tr>
<tr>
<td>Prevention and Control Strategies</td>
<td>893</td>
</tr>
<tr>
<td>Conclusions</td>
<td>894</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wear Failures</th>
<th>899</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chairpersons: Jeff Hawk and Richard Wilson</td>
<td></td>
</tr>
</tbody>
</table>

Fundamentals of Wear Failures	901
Examination and Characterization of the Tribosystem	901
Characterization and Modeling of the Wear Situation	902
Obtaining and Evaluating Wear Data	903
Evaluation and Verification of Solutions	904
Avoiding Wear Failures	904

Abusive Wear Failures	906
General Classification of Wear	907
Abusive Wear Mechanisms	909
Wear Failure Analysis	914
Examples of Abusive Wear	915

Fretting Wear Failures	922
Fretting Wear	922
Examples of Fretting Failures	934

Rolling Contact Fatigue	941
General Principles of RCF	941
Rolling Contact Fatigue of Vapour-Deposited Coatings	945
Rolling Contact Fatigue of TS Coatings	949

Rolling Contact Fatigue of Ceramics	957
Surface Crack Defects	957
Fatigue Crack Propagation in Rolling Contact	958
Rolling Contact Fatigue Test Machines	959
Failure Modes of RCF	960

Impact Wear Failures	965
Impact Wear Modes	965
Impact Wear of Metals	965
Impact Wear of Ceramics	968
Impact Wear of Polymers	970
Impact Wear Testing	970
Impact Wear Modelling	971
Impact Wear Failure Case Study: Automotive Engine Inlet Valve and Seat Wear	971

Spalling from Impact Events	975
Development of Testing and Analysis Methods for Spalling of Strike Tools	975
Conclusions Drawn by Spalling Studies	978
Metallography and Fractography of Spalling	982
Comments on Specifications for Strike/Strike Tools	985
New Materials for More Spall-Resistant Tools	987
Conclusions	988

| Corrosive Wear Failures | 989 |
| Occurrences in Practice | 989 |

Effect of Environmental Factors on Corrosive Wear | 990 |
Creasing Wear: Impact and Three-Body Abrasive-Corrosive Wear | 991 |
Means for Combating Corrosive Wear | 992 |
Erosive Wear Failures | 995 |
Erosion of Brittle Materials | 996 |
Examples of Erosive Wear Failures | 997 |
Cavitation Erosion | 1002 |
Cavitation Mechanisms | 1002 |
Cavitation Erosion Analysis | 1002 |
Industry Examples of Cavitation Failure | 1004 |
Cavitation Resistance of Materials | 1005 |
Other Prevention Parameters | 1007 |
Cavitation Tests | 1007 |
Liquid-Impact Erosion | 1013 |
Cavitation Erosion | 1013 |
Liquid-Droplet Erosion | 1014 |
Materials Issues in Liquid Impact | 1015 |
Mitigation and Repair of Liquid-Impact Damage | 1016 |

Wear Failures of Plastics | 1019 |
Interfacial Wear | 1019 |
Cohesive Wear | 1022 |
Elastomers | 1022 |
Thermoplastics | 1023 |
Glasy Thermoplastics | 1023 |
Semicyrstalline Thermoplastics | 1023 |
Environmental and Lubricant Effects on the Wear Failures of Polymers | 1024 |
Summary and Case Study | 1025 |
Failure Examples | 1026 |

Wear Failures of Reinforced Polymers | 1028 |
Abrasive Wear Failure of Reinforced Polymers | 1029 |
Sliding (Adhesive) Wear Failure of Polymer Composites | 1035 |

Distortion | 1045 |

Analysis of Distortion and Deformation | 1047 |
Overloading | 1047 |
Inappropriate Specifications | 1050 |
Failure to Meet Specifications | 1051 |
Analyzing Distortion Failures | 1054 |
Special Types of Distortion Failure | 1055 |
Deformation Related to Other Types of Failure | 1057 |
Deformation by Design | 1057 |

Reference Information | 1059 |
Glossary | 1061 |
Metric Conversion Guide | 1077 |
Abbreviations and Symbols | 1081 |
Directory of Examples of Failure Analysis | 1084 |
Index | 1090 |