Contents

Introduction ... 1

Introduction to Bulk-Forming Processes
S.L. Semiatin .. 3
Historical Perspective .. 3
Classification of Metalworking Processes 3
Types of Metalworking Equipment 4
Recent Developments in Bulk Forming 4
Conclusions and Future Outlook 7

Design for Deformation Processing
Howard Kahn ... 11
Product Design .. 11
Processing to Meet Product Design Requirements 11
Deformation Processing to Meet Product Design 12
Specifications ... 12
Advantages and Disadvantages of Deformation Processes 13
Summary .. 19

Forging Equipment and Dies .. 21

Hammers and Presses for Forging
Taylan Altun, Munav Sirgancar .. 23
Hammer ... 23
High-Energy-Rate Forging (HERF) Machines 26
Mechanical Presses .. 27
Hydraulic Presses .. 30
Screw Presses .. 33
Multiple-Ram Presses ... 34
Safety .. 35

Selection of Forging Equipment
Taylan Altun, Munav Sirgancar .. 36
Process Requirements and Forging Machines 36
Classification and Characterization of Forging Machines .. 37
Hydraulic Presses .. 39
Mechanical Presses ... 40
Screw Presses .. 43
Hammer ... 45

Dies and Die Materials for Hot Forging
Rajeev Srivastava .. 47
Open Dies ... 47
Impression Dies .. 47
Forging Machine Dies ... 49
Die Materials (Ref 1) .. 49
Factors in the Selection of Die Materials 50
Die Inserts ... 52
Parting Line ... 52
Locks and Counterlocks ... 53
Mismatch ... 54

Draft .. 54
Flash ... 54
Preform Design .. 55
Location of Impressions ... 55
Multiple-Pair Dies ... 55
Dies for Precision Forging .. 56
Fabrication of Impression Dies 56
Reshinking ... 57
Cast Dies ... 57
Heat Treating ... 58
Trimming and Punching Dies 60
Die Life .. 60
Safety ... 61

Die Wear
Rajeev Srivastava, Sailash Babu, S.L. Semiatin 62
Die Wear and Failure Mechanisms 62
Materials for Dies ... 64
Die Wear in Hot Forging Dies 70
Surface Treatments and Coatings 75
Lubricants and their Applications in Forging 84

Candidate Lubricants ... 84
Applications ... 85

Die Manufacturing and Finishing 93
High-Speed and Hard Machining 93
Nontraditional Machining of Dies and Molds 95
Other Methods .. 96

Forging Processes ... 97

Open-Die Forging ... 99
Size and Weight ... 99
Shapes ... 99
Hammers and Presses .. 99
Dies ... 99
Auxiliary Tools ... 99
Forging Equipment .. 101
Production and Practice ... 101
Input Structure and Its Elimination 102
Portability ... 102
Deformation Modeling .. 102
Examples of Production Practice 104
Contour Forging ... 107
Roll Planching .. 108
Allowances and Tolerances 108
Safety .. 110

Closed-Die Forging in Hammers and Presses 111
Capabilities of the Process 111
Forging Materials ... 111
Friction and Lubrication in Forging
Classification of Closed-Die Forgings
Shape Complexity in Forging
Design of Blocker (Preform) Dies
Flash Design
Prediction of Forging Pressure
Equipment for Close-Die Forging
Forging Temperatures for Steels
Control of Die Temperature
Trimming
Cooling Practice
Typical Forging Sequences

Hot Upset Forging
J. Richard Douglas

Upset Forging Machines
Selection of Machine Size
Tools
Preparation of Forging Stock
Metal-Saving Techniques
Heating
Die Cooling and Lubrication
Simple Upsetting
Upsetting and Piercing
Offset Upsetting
Double-End Upsetting
Upsetting with Sliding Dies
Upsetting Pipe and Tubing
Electric Upsetting
Other Upsetting Processes

Roll Forging
Prophet K. Chaudhary, Roger Rees
Capabilities
Machines
Roll Dies
Auxiliary Tools
Production and Practice
Modeling and Simulation
Production Examples

Ring Rolling
Robert Bolin
Process Overview
Applications
Ring Slabs and Production Ranges
Machines
Product and Process Technology
Blank Preparation
Ancillary Operations
Blanking Tools and Work Rolls
Combined Forging and Rolling
Rolled Ring Tolerances and Machining
Allowances
Alternative Processes

Rotary Swaging of Bars and Tubes
Brian Flann, Donald Hack, Albert L. Hoffmanner, Richard Kelly,
Walter Perna
Applicability
Metal Flow During Swaging
Machines
Swaging Dies

Auxiliary Tools
Automated Swaging Machines
Tube Swaging without a Mandrel
Tube Swaging with a Mandrel
Effect of Reduction
Effect of Feed Rate
Effect of Die Taper Angle
Effect of Surface Contaminants
Lubrication
Dimensional Accuracy
Surface Finish
Swaging versus Alternative Processes
Swaging Combined with Other Processes
Special Applications
Hot Swaging
Material Response
Noise Suppression
Swaging Problems and Solutions

Radial Forging
H. W. Stock

Types of Radial Forging
Advantages of Radial Forging Versus Open-Die Cogging
Disadvantages of Radial Forging versus Open-Die Cogging
Forging
Types of Radial Forging Machines
Forging Schedule Development
Forging Dies
Product Shape Control
Example Parts and Processes

Rotary Forging
Applications
Advantages and Limitations
Machines
Dies
Examples
Isotherm and Hot-Die Forging
R.E. Montery, L.G. Housefeld, R.S. Mace

Comparison
History
Process Advantages
Process Disadvantages
Detailed Process Description
Alloy Applications
Process Selection
Process Design
Forging Design Guidelines
Applications of Finite-Element Analysis Modeling to Design
Cost
Production Forgings
Future Industry Trends

Precision Hot Forging
J. Richard Douglas

Variables Affecting the Accuracy of Forgings
Tolerances for Precision Forging
Precision Flashless Forging
Flashless Forging of Spur Gears
Forging and Welding of Axle Shafts
Forging of Bevel Gears/Spiral Bevel Gears
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powder Forging</td>
<td>204</td>
</tr>
<tr>
<td>B. Lynn Ferguson</td>
<td>205</td>
</tr>
<tr>
<td>Material Considerations</td>
<td>206</td>
</tr>
<tr>
<td>Process Considerations</td>
<td>208</td>
</tr>
<tr>
<td>Mechanical Properties</td>
<td>213</td>
</tr>
<tr>
<td>Quality Assurance for PF Parts</td>
<td>219</td>
</tr>
<tr>
<td>Applications of Powder Forged Parts</td>
<td>220</td>
</tr>
<tr>
<td>Practical Aspects of Converting Ingot to Billet</td>
<td></td>
</tr>
<tr>
<td>Bruce Antolovich, Angelo Germini, Paul Keefe, Michael Hill,</td>
<td></td>
</tr>
<tr>
<td>Bruce Lindsay, Vassilis Venkairos</td>
<td>227</td>
</tr>
<tr>
<td>Cogging</td>
<td>227</td>
</tr>
<tr>
<td>Presses</td>
<td>227</td>
</tr>
<tr>
<td>Dies</td>
<td>229</td>
</tr>
<tr>
<td>Transportation Equipment</td>
<td>229</td>
</tr>
<tr>
<td>Thermal Control</td>
<td>230</td>
</tr>
<tr>
<td>Conversion Processes</td>
<td>230</td>
</tr>
<tr>
<td>Modeling of the Cogging Process</td>
<td>232</td>
</tr>
<tr>
<td>Conclusions</td>
<td>236</td>
</tr>
<tr>
<td>Forging of Steels and Heat-Resistant Alloys</td>
<td>239</td>
</tr>
<tr>
<td>Forging of Carbon and Alloy Steels</td>
<td></td>
</tr>
<tr>
<td>C.J. Van Tye</td>
<td>241</td>
</tr>
<tr>
<td>Types of Forgings</td>
<td></td>
</tr>
<tr>
<td>Forging Practices</td>
<td>241</td>
</tr>
<tr>
<td>Selection of Steel</td>
<td>243</td>
</tr>
<tr>
<td>Controlled Forging of Steel</td>
<td>245</td>
</tr>
<tr>
<td>Forgeability and Mechanical Properties</td>
<td>246</td>
</tr>
<tr>
<td>Effects of Forging on Component Properties</td>
<td>248</td>
</tr>
<tr>
<td>Heat Treatment of Carbon and Alloy Steel</td>
<td>250</td>
</tr>
<tr>
<td>Forgings</td>
<td></td>
</tr>
<tr>
<td>Design Features</td>
<td>251</td>
</tr>
<tr>
<td>Machining of Forgings</td>
<td>254</td>
</tr>
<tr>
<td>Design of Hot Forged Forgings</td>
<td>258</td>
</tr>
<tr>
<td>Forging of Stainless Steels</td>
<td></td>
</tr>
<tr>
<td>George Michal</td>
<td>261</td>
</tr>
<tr>
<td>Forging Methods</td>
<td>261</td>
</tr>
<tr>
<td>Ingot Breakdowns</td>
<td>269</td>
</tr>
<tr>
<td>Forgeability</td>
<td>262</td>
</tr>
<tr>
<td>Austenitic Stainless Steels</td>
<td>262</td>
</tr>
<tr>
<td>Mmartensitic Stainless Steels</td>
<td>264</td>
</tr>
<tr>
<td>Ferritic Stainless Steels</td>
<td>265</td>
</tr>
<tr>
<td>Precipitation-Hardening Stainless Steels</td>
<td>265</td>
</tr>
<tr>
<td>Forging Equipment</td>
<td>265</td>
</tr>
<tr>
<td>Dies</td>
<td>265</td>
</tr>
<tr>
<td>Heating for Forging</td>
<td>267</td>
</tr>
<tr>
<td>Heating of Dies</td>
<td>267</td>
</tr>
<tr>
<td>Die Lubrication</td>
<td>268</td>
</tr>
<tr>
<td>Trimming</td>
<td>268</td>
</tr>
<tr>
<td>Cleaning</td>
<td>268</td>
</tr>
<tr>
<td>Forging of Heat-Resistant Alloys</td>
<td></td>
</tr>
<tr>
<td>Y. Bhambri, V.K. Sikka</td>
<td>269</td>
</tr>
<tr>
<td>Forging Process</td>
<td>269</td>
</tr>
<tr>
<td>Grain Refinement with IN-718 Forging—Controlling Structure with Precipitated Phases (Ref 3)</td>
<td>273</td>
</tr>
<tr>
<td>Forging Methods</td>
<td>273</td>
</tr>
<tr>
<td>Forging Alloys</td>
<td>274</td>
</tr>
<tr>
<td>Deformation Mechanisms and Processing Maps</td>
<td>278</td>
</tr>
<tr>
<td>Equipment</td>
<td>279</td>
</tr>
<tr>
<td>Forging Practices</td>
<td>281</td>
</tr>
<tr>
<td>Heat Treatment</td>
<td>282</td>
</tr>
<tr>
<td>Forging of Refractory Metals</td>
<td></td>
</tr>
<tr>
<td>John A. Shields, Jr., Kurt D. Moser, R. William Buckman, Jr.,</td>
<td></td>
</tr>
<tr>
<td>Todd Leonard, C. Craig Wescot</td>
<td>284</td>
</tr>
<tr>
<td>Niobium and Niobium Alloys</td>
<td>284</td>
</tr>
<tr>
<td>Molybdenum and Molybdenum Alloys</td>
<td>284</td>
</tr>
<tr>
<td>Tantalum and Tantalum Alloys</td>
<td>285</td>
</tr>
<tr>
<td>Tungsten and Tungsten Alloys</td>
<td>285</td>
</tr>
<tr>
<td>Thermomechanical Processing of Ferrous Alloys</td>
<td></td>
</tr>
<tr>
<td>Stephen Yee</td>
<td>286</td>
</tr>
<tr>
<td>Rolling Practices and TMP Factors</td>
<td>287</td>
</tr>
<tr>
<td>Grain Refinement of Steel by Hot Working</td>
<td>288</td>
</tr>
<tr>
<td>Restoration Processes</td>
<td>288</td>
</tr>
<tr>
<td>Strain-Induced Transformation (Austenite Pancaking)</td>
<td>290</td>
</tr>
<tr>
<td>Alloying in HSLA Steels</td>
<td>290</td>
</tr>
<tr>
<td>Evolution of Microstructure During Hot Rolling</td>
<td>291</td>
</tr>
<tr>
<td>General Guidelines for Schedule Design</td>
<td>293</td>
</tr>
<tr>
<td>Basic Rolling Strategies</td>
<td>293</td>
</tr>
<tr>
<td>Other Schedules and TMP Strategies</td>
<td>295</td>
</tr>
<tr>
<td>The Future of TMP</td>
<td>296</td>
</tr>
<tr>
<td>Forging of Nonferrous Metals</td>
<td></td>
</tr>
<tr>
<td>G.W. Kuhlman</td>
<td>297</td>
</tr>
<tr>
<td>Forgeability</td>
<td>299</td>
</tr>
<tr>
<td>Forging Methods</td>
<td>301</td>
</tr>
<tr>
<td>Forging Equipment</td>
<td>303</td>
</tr>
<tr>
<td>Die Materials, Design, and Manufacture</td>
<td>304</td>
</tr>
<tr>
<td>Processing of Aluminum Alloy Forgings</td>
<td>305</td>
</tr>
<tr>
<td>Forging of Advanced Aluminum Materials</td>
<td>308</td>
</tr>
<tr>
<td>Aluminum Alloy Precision Forgings</td>
<td>309</td>
</tr>
<tr>
<td>Forging of Copper and Copper Alloys</td>
<td></td>
</tr>
<tr>
<td>Forging Products</td>
<td>313</td>
</tr>
<tr>
<td>Forging Processes</td>
<td>313</td>
</tr>
<tr>
<td>Forging Alloys</td>
<td>314</td>
</tr>
<tr>
<td>Forging Design</td>
<td>315</td>
</tr>
<tr>
<td>Forging Equipment</td>
<td>315</td>
</tr>
<tr>
<td>Forging Practices</td>
<td>316</td>
</tr>
<tr>
<td>Forging of Magnesium Alloys</td>
<td></td>
</tr>
<tr>
<td>Prasad K. Chapekar, Sean R. Agnew</td>
<td>318</td>
</tr>
<tr>
<td>Workability</td>
<td>319</td>
</tr>
<tr>
<td>Forging Equipment</td>
<td>321</td>
</tr>
<tr>
<td>Forging Processes</td>
<td>321</td>
</tr>
<tr>
<td>Forging Practice</td>
<td>322</td>
</tr>
<tr>
<td>Forging of Nickel-Base Alloys</td>
<td></td>
</tr>
<tr>
<td>D.L. Furrer, S.I. Semiatin</td>
<td>324</td>
</tr>
<tr>
<td>Heating for Forging</td>
<td>324</td>
</tr>
<tr>
<td>Die Materials and Lubricants</td>
<td>326</td>
</tr>
<tr>
<td>Primary Working</td>
<td>326</td>
</tr>
</tbody>
</table>
Roll Forming of Axially Symmetric Components
VA Vallone, D.U. Farre
Roll Forming Process 480
Roll Formed Aluminum Alloy Components 482
Roll Formed Titanium Alloy Components 484
Roll Formed Nickel-Alloy Components 487
Mechanical Property Data for Titanium and Nickel Alloys 487
Thread Rolling 489
Capabilities and Limitations 489
Evaluation of Metals for Thread Rolling 490
Preparation and Feeding of Work Blanks 491
Die Materials 491
Flat-Die Rolling 492
Radial-Infed Rolling 493
Tangential Rolling 494
Through-Feed Rolling 495
Planetary Thread Rolling 496
Continuous Rolling 497
Internal Thread Rolling 497
Selection of Rolling Method 498
Factors Affecting Die Life 499
Effect of Thread Form on Processing 500
Surface Speed 500
Penetration Rate and Load Requirements 500
Wear Rolling 501
Threading of Thin-Wall Parts 502
Threading Work-Hardening Materials 502
Rolling Threads Close to Shoulders 503
Fluids for Thread Rolling 503
Thread Rolling versus Alternative Processes 504
Coextrusion
Raguvan SinhaSaw, Craig S. Hurley
Applications of Coextrusion 505
Billet Configurations for Coextrusion 506
Material Flow Modes During Coextrusion 506
Analytical Studies of Coextrusion 507
Deformation Energy Method 507
Experimental Studies 512
State-of-the-Art of Coextrusion 513
Flow Forming
George Bay, Denis Ylanaz, Matthew Fonzi, Richard P. Keele 516
Process Description 516
Tooling 518
Forming Direction 519
Process Control 520
Extrusion of Aluminum Alloys
Wojciech Z. Mistolik, Richard M. Kelly 522
Aluminum Extrusion alloys 522
Profile Types 522
Classes of Profiles 523
Process of Aluminum Extrusion 524
Equal Channel Angular Extrusion
Vladimir Segal 528
Phenomenology of Severe Plastic Deformation 528
Mechanics of Equal-Channel Angular Extrusion 529
Multipass Equal-Channel Angular Extrusion 530
Characteristics of Processing 531
Tool Design 532
Structural Effects 533
Effect on Properties 534
Applications 535
Microstructure Evolution, Constitutive Behavior, and Workability 537
Plastic Deformation Structures 539
Plastic Deformation in Crystals 539
Amount of Deformation 542
Composition 544
Deformation Modes 545
Low Temperature and High Strain Rate 548
Elevated Temperatures 549
Recovery, Recrystallization, and Grain-Growth Structures 552
The Deformed State 552
Recovery 553
Recrystallization 554
Grain Growth 557
Microstructure Evolution during Hot Working (Ref 15) 559
Constitutive Equations
Anil Ghosh 563
Strain Hardening 563
Strain Rate Effects 563
Isothermal Constitutive Model 565
Dynamic Recovery 570
Diffusional Flow Mechanisms 574
Physical Model for Superplastic Flow 579
Evaluation of Workability for Bulk Forming Processes
George E. Dietz 587
Flow Curves 587
Material Factors Affecting Workability 591
Process Variables Determining Workability 594
Workability Fracture Criteria 596
Workability Tests 602
Finite-Element Modeling in Workability Analysis 610
Conclusions 612
Modeling and Computer Aided Process Design for Bulk Forming 615
Finite Element Method Applications in Bulk Forming
Soo-Hi Oh, John Walters, Wei-Tsu Wu 617
Historical Overview 617
Methodologies 618
Primary Materials Processing Applications 619
Hot Forging Applications 621
Cold Forming Applications 624
Feature Prediction 627
DIE Stress Analysis 630
Product Assembly 632
Optimization of Forging Simulations 634
Conclusion 637
Design Optimization for Dies and Preforms
Anil Choudhary, Shuha Yee 640
Composing the Objective Function 640
Calculation of the Objective Function 641
Search for Optimum 642
Conclusions 644
Forging Design Involving Ribs and Bosses

- **Defining Ribs and Bosses** 741
- **Types of Ribs and Bosses** 741
- **Functional Designs, Properties, and Production of Ribs and Bosses** 741
- **Metal Flow in the Forging of Ribs** 745
- **Measurement of Ribs and Bosses** 747
- **Design Parameters for Ribs and Bosses** 747
- **Rib Design Data from Actual Forgings** 749
- **Designer's Checklist for Ribs** 752
- **Examples** 752

Forging Design Involving Corners and Fillets

- **Service Functions and Forging Productivity** 759
- **Factors Affecting Size of Corners and Fillets** 759
- **The Role of Corners and Fillets in Metal Flow** 760
- **Design Parameters Derived from Actual Forgings** 764
- **Designer's Checklist for Corners and Fillets** 768
- **Examples** 769

Forging Design Involving Cavities and Holes

- **Enclosures, Cavities, and Holes in Hammer and Press Forgings** 793
- **Cavities Produced by Piercing** 795
- **Cavities Developed by Extrusion** 796
- **Designer’s Checklist for Cavities and Holes** 796
- **Examples** 796

Forging Design Involving Flash and Trim

- **Flash Components** 812
- **Functions of Flash** 813
- **Control of Flash** 813
- **Designs of Flash for Productivity** 813
- **Designer’s Checklists for Flash and Trim** 819

Forging Design :Extensions and Tolerances

- **Dimensioning and Tolerancing** 820
- **Dimensioning with Tooling Points and Datum Plates** 820
- **Application of Tolerances** 821
- **Designer’s Checklist for Dimensions and Tolerances** 823

Resource Information

- **Useful Formulas for Deformation Analysis and Workability Testing** 827
- **Glossary of Terms** 831
- **Steel Hardness Conversions** 852
- **Nonferrous Hardness Conversions** 858
- **Metric Conversion Guide** 861
- **Abbreviations and Symbols** 864
- **Index** 868